

Physics Syllabus 2019 – 2020

Course Description

The AP Physics 1 class is designed to introduce students to the algebra based physics learned at the college level.

At the end of the course, students will take the AP Test, which will test students' knowledge of both the conceptual and mathematical formulations of the requisite concepts.

What is Physics?

It was a warm summer's evening in ancient Greece...

Expectations

More specifically, students are expected to **demonstrate** their learning through the creation, interpretation, and analysis of data.

Students will then be assessed through the **production** of their written work, tasks, laboratory reports, practicums, oral presentations, projects, and tests/quizzes.

Required Material

- Textbook: College Physics: A Strategic Approach (3rd Edition) Randall D. Knight (Professor Emeritus) and Brian Jones
- Graphing Calculator
- Notebook

TEACHER

Benjamin Wilson

ROOM

A26

PHONE

480-424-8152

EMAIL

Wilson.benjamin@cusd80.com

Grading Categories

Methods of Assessment:

Each Semester, grades will be based on the following:

production of: Written work Tasks Laboratory reports Practicums Oral presentations Projects Quizzes Tests

(Classwork/ Homework	Labs (Important in college level science class)	Quizzes/ Tests		
*	Many of the problems we will work on in class in groups and as a whole It is imperative that you participate, ask questions, make mistakes, and work to understand each concept	 Most units will have activities and labs to test theories and concepts. Lab groups create their own procedures and run experiments collecting data and developing models for the phenomenon. Each lab partner will do their own conclusion or perspective 	*	Can be a mixture of multiple choice, free response and anything in between. Most quizzes and tests are based off of previous AP Exam questions.	
*	Homework will be assigned each class. It will be graded on a completion score however, the quizzes and tests are based on the homework, make mistakes and struggle on the homework, not the quiz/test	 It is good scientific practice to have: Lab Notebooks: Notes for personal reflection on all phases of the lab (Prelab, data collection, post-lab) Lab Reports: Each student is responsible for creating their own formal lab report using the appropriate format 		Quizzes: 1 per week unless having a test that week. <u>Tests:</u> End of each unit There are no test corrections or re- takes however there will be an opportunity to	
*	You will want to keep your homework after it has been graded. It is a useful way to study for tests and exams.			earn bonus points – Freee	

Semester Exam Grade: 20%

Units of Study

Unit 1: Kinematics

Reference Frames and Displacement Average Velocity and Instantaneous Velocity Motion at Constant Acceleration Falling Objects Adding Vectors by Components Projectile Motion: projectiles fired horizontally and at an angle Graphical Analysis of Motion *Textual Readings:* College Physics: Chapter 1, 2, 3

Unit 2: Dynamics

Forces Free-Body-Diagrams Newton's Laws of Motion Mass and Weight Applications Involving Friction, Inclines *Textual Readings: College Physics: Chapter 4*, 5

Unit 3: Circular Motion & Gravitation

Kinematics of Uniform Circular Motion Dynamics of Uniform Circular Motion Newton's Law of Universal Gravitation Gravity Near the Earth's Surface Satellites and "Weightlessness" Kepler's Laws *Textual Readings:* Knight: Chapter 6

Unit 4: Energy

Work

Kinetic Energy and the Work-Energy Theorem Potential Energy: Gravitational and Elastic Mechanical Energy and its Conservation Power

Textual Readings: College Physics: Chapter 10

Unit 5: Momentum

Impulse and Change in Momentum Conservation of Momentum Conservation of Energy and Momentum in Collisions (1 dimension) Conservation of Momentum in Collisions (2 dimensions: qualitative and semi-quantitative only) *Textual Readings:* College Physics: Chapter 9

Unit 6: Unit Simple Harmonic Motion

Simple Harmonic Motion SHM Graphs: position, velocity, acceleration, energy Energy in SHM Mass-Spring Systems Simple Pendulum *Textual Readings:* College Physics: Chapter 14

Unit 7: Torque & Rotational Motion

Torque Center of Mass (qualitative) Rotational Kinematics Rotational Dynamics and Rotational Inertia Rolling Motion (without slipping) Rotational Kinetic Energy Angular Momentum and its Conservation *Textual Readings:* College Physics: Chapter 7

Unit 8: Mechanical Waves & Sound

Wave Motion Types of Waves: Transverse and Longitudinal Energy Transmitted by Waves: relationship of energy and wave amplitude Reflection and Interference of Waves Standing Waves Sources of Sound: Standing waves for stringed instruments Standing waves for a tube open at both ends and for a tube closed at one end Beats Doppler Effect (qualitative) *Textual Readings:* College Physics: Chapter 15, 16

Unit 9: Electric Charge & Electric Force

Static Electricity; Electric Charge and its Conservation Electric Charge in the Atom Charging Processes Coulomb's Law *Textual Readings:* College Physics: Chapter 20

Unit 10: DC Circuits

Electric Current Ohms Law: Resistance and Resistors Resistivity Electric Power DC Circuits Resistors in Series and Parallel Kirchhoff's Rules (circuits with one battery only) Internal Resistance is NOT covered in AP Physics 1 *Textual Readings:* College Physics: Chapter 22, 23

Contents of Physics 1 Based on 6 Big Ideas

charge. Systems may have internal structure.

Big Idea 2: Fields existing in space can be used to explain interactions.

Big Idea 3: The interactions of an object with other objects can be described by forces.

Big Idea 4: Interactions between systems can result in changes in those systems.

Big Idea 5: Changes that occurs as a result of interactions are constrained by conservation laws.

Big Idea 6: Waves can transfer energy and momentum from one location to another without the permanent transfer of mass and serve as a mathematical model for the description of other phenomenon.

Unit	Chapter	Learning Objectives	Unit	Chapter	Learning Objectives	
Kinematics (Big Idea 3) One dimensional motion: constant velocity and uniform accelerated motion Vectors: components & resultant Two dimensional motion: projectile motion	1, 2, 3	3.A.1.1, 3.A.1.2, 3.A.1.3, 4.A.1.1, 4.A.2.1, 4.A.2.3	6. Rotational Motion (Big Ideas 3, 4, 5) * Torque * Center of Mass * Rotational kinematics * Rotational dynamics & rotational inertia * Rotational energy	14	3.F.1.1, 3.F.1.2, 3.F.1.3, 3.F.1.4, 3.F.1.5, 3.F.2.1, 3.F.2.2, 3.F.3.1, 3.F.3.2, 3.F.3.3, 4.A.1.1, 4.D.1.1, 4.D.1.2, 4.D.2.1, 4.D.2.2, 4.D.3.1, 4.D.3.2, 5.E.1.1, 5.E.1.2, 5.E.2.1	
2. Dynamics (Big Ideas 1, 2, 3,	4, 5 1 3 3 4	1.C.1.1, 1.C.3.1, 2.B.1.1, 3.A.2.1, 3.A.3.1,	* Angular momentum			
 4) * Forces & free body diagrams * Newton's 1st Law * Newton's 2st Law * Newton's 3st Law * Applications of Newton's 2st Law 		3.A.3.2, 3.A.3.3, 3.A.3.4, 3.A.4.1, 3.A.4.2, 3.A.4.3, 3.B.1.1, 3.B.1.2, 3.B.1.3, 3.B.2.1, 3.C.4.1, 3.C.4.2, 4.A.1.1, 4.A.2.1, 4.A.2.2, 4.A.2.3, 4.A.3.1, 4.A.3.2 * Still Graphs * Simple Pendulum * Mass-spring systems 8. Mechanical Waves (Big Idease)	*Conservation of angular momentum 7. Simple Harmonic Motion (Big Ideas 3 & 5) * Restoring forces * SHM Graphs * Simple Pendulum * Mast-spring systems	7	3.B.3.1, 3.B.3.2, 3.B.3.3, 3.B.3.4, 5.B.2.1, 5.B.3.1, 5.B.3.2, 5.B.3.3, 5.B.4.1, 5.B.4.2	
* Friction			15,16	6.A.1.1, 6.A.1.2, 6.A.2.1, 6.A.3.1, 6.A.4.1,		
3. Circular Motion (Big Ideas 1, 2, 3, 4) * Uniform circular motion * Dynamics of uniform circular motion * Universal Gravitation	6	1.C.3.1, 2.B.1.1, 2.B.2.1, 2.B.2.2, 3.A.3.1, 3.A.3.3, 3.B.1.2, 3.B.1.3, 3.B.2.1, 3.C.1.1, 3.C.1.2, 3.G.1.1, 4.A.1.1, 4.A.2.1, 4.A.2.2, 4.A.2.3	6) * Traveling waves * Wave characteristics * Sound * Superposition		6.B.1.1, 6.B.2.1, 6.B.4.1, 6.B.5.1, 6.D.1.1, 6.D.1.2, 6.D.1.3, 6.D.2.1, 6.D.3.1, 6.D.3.2, 6.D.3.3, 6.D.3.4, 6.D.4.1, 6.D.4.2, 6.D.5.1	
4. Energy (Big Ideas 3, 4, 5)	10 3.E.1.1, 3.E.1.2, 3.E.1.3, 3.E.1.4, 4.C.1.1, 4.C.1.2, 4.C.2.1, 4.C.2.2, 5.A.2.1, 5.B.1.1, 5.B.1.2, 5.B.2.1, 5.B.3.1, 5.B.3.2, 5.B.3.3, 5.B.4.1, 5.B.4.2, 5.B.5.1, 5.B.5.2, 5.B.5.3, 5.B.5.4, 5.B.5.5, 5.D.1.1, 5.D.1.2, 5.D.1.3, 5.D.1.4, 5.D.1.5, 5.D.2.1, 5.D.2.3 9 3.D.1.1, 3.D.2.1, 3.D.2.2, 3.D.2.3, 3.D.2.4, 4.B.1.1, 4.B.1.2, 4.B.2.1, 4.B.2.2, 5.A.2.1, 5.D.1.1, 5.D.1.2, 5.D.1.5, 5.D.2.1, 5.D.2.3, 5.D.2.4, 5.D.2.5, 5.D.3.1	3.E.1.1, 3.E.1.2, 3.E.1.3, 3.E.1.4, 4.C.1.1,	* Standing waves on a string * Standing cound traves			
* Work * Power * Kinetic energy * Potential energy (gravitational, elastic) * Conservation of Energy		Summing sound waves 9. Electrostatics (Big Ideas 1, 3, 5) * Electric charge & conservation of charge * Electric force: Contomb's Law	20	1.B.1.1, 1.B.1.2, 1.B.2.1, 1.B.3.1, 3.C.2.1, 3.C.2.2, 5.A.2.1		
5. Momentum (Big Ideas 3, 4, 5) * Impulse * Momentum * Conservation of Momentum * Elastic & Inelastic Collisions		10. DC Circuits (Big Ideas 1, 5) * Electric resistance * Ohm's Law * DC Circuits * Series & Parallel Circuits * Kirchhoff's Laws	22, 23	1.B.1.1, 1.B.1.2, 1.E.2.1, 5.B.9.1, 5.B.9.2, 5.B.9.3, 5.C.3.1, 5.C.3.2, 5.C.3.3		

Laboratory Activities

The Physics course devotes over 25% of the time to laboratory investigations [CR5]. The laboratory component of the course allows the students to demonstrate the seven science practices through a variety of investigations in all of the foundational principles.

The students use **guided inquiry (GI)** or **open inquiry (OI)** in the design of their laboratory investigations. Some labs focus on investigating a physical phenomenon without having expectations of its outcomes. In other experiments, the student has an expectation of its outcome based on concepts constructed from prior experiences. In application experiments, the students use acquired physics principles to address practical problems.

All investigations are reported in a laboratory journal. Students are expected to record their observations, data, and data analyses. Data analyses include identification of the sources and effects of experimental uncertainty, calculations, results and conclusions, and suggestions for further refinement of the experiment as appropriate. [CR7]

Name	Open- Inquiry or Guided- Inquiry? ICR6b1	Short Description	Science Practices	Name	Open- Inquiry or Guided- Inquiry? [CR6b]	Short Description	Science Practices
#1 Speed Lab	Y	Students will design an experiment to determine the range of speeds of a variable speed cart.	2.1, 2.2, 4.1, 4.2, 4.3	Forces on a Crate Simulation	N	Using a simulation, analyze the motion of a crate. Students can vary the force on the crate, the direction of that force, the initial velocity of the crate, and the coefficient of kinetic	1.1, 1.4, 2.2, 4.3, 6.1
Three Cars Racing Simulation	N	A computer simulation of three cars with different accelerations racing.	1.4, 2.2, 4.3, 6.1	Jupiter's Moons	N	Students will do research on Jupiter and four of its moons.	1.1, 1.4, 2.1, 2.2, 3.3, 4.1, 4.2,
#2 Rocket Lab	Y	Students will design an experiment to determine the initial velocity of an air-powered rocket.	1.2, 1.4, 2.1, 2.2, 4.1, 4.2, 4.3			Based on this research, students will mathematically come up with the mass of Jupiter. They will compare this information to the accepted value.	4.3, 4.4, 5.1, 6.1, 6.2, 6.4, 7.1
#3 Marble in Cup Lab	N	Students will determine where a paper cup needs to be placed on the floor so that a marble rolled off of the edge of a table will land in it.	1.4, 2.1, 2.2, 2.3, 4.3	#6 Pendulum Lab	Y	What factor(s) control the period of a simple pendulum?	1.1, 1.4, 2.1, 2.2, 3.3, 4.1, 4.2, 4.3, 4.4, 5.1, 6.1, 6.2, 6.4
				#7 Mass-Spring Oscillator Lab	Y	Students must determine both the spring constant <i>k</i> of a spring	1.1, 1.4, 2.1, 2.2, 3.3, 4.1, 4.2,
#4 Projectile Mo- tion Challenges	Y	Using a projectile launcher, students will be given a series of challenges such as placing a ring stand at the maximum height, or placing a cup at the point where the marble will land.	1.4, 2.1, 2.2, 4.1, 4.2, 4.3			and the mass of three unknown masses. Students must also investigate the conservation of mechanical energy of the system. Materials given: spring with unknown spring constant, known masses, unknown masses.	4.3, 4.4, 5.1, 6.1, 6.2, 6.4
#5 Newton's 2nd Law Lab	Y	What is the relationship between the mass of a system and the acceleration of the system?	1.1, 1.4, 2.1, 2.2, 3.3, 4.1, 4.2, 4.3, 4.4, 5.1, 6.1, 6.2, 6.4	#8 Conservation of Linear Momen- tum Lab	Y	Using a track and collision carts, students will observe seven different collisions and make conclusions about momentum conservation in real life situations.	1.1, 1.4, 2.1, 2.2, 3.3, 4.1, 4.2, 4.3, 4.4, 5.1, 6.1, 6.2, 6.4, 7.2

Name	Open- Inquiry or Guided- Inquiry? [CR6b]	Short Description	Science Practices		Name	Open- Inquiry or Guided- Inquiry?	Short Description	Science Practices
A Two Car Collision Simulation	N	Students will observe a simulation of two identical cars crashing. The elasticity of the collision can be varied.	1.1, 1.4, 2.2, 4.3, 6.1	#	#13 Series and	[CR6b] Y	Using a number of resistors,	1.1, 1.4, 2.1, 2.2
#9 Introductory Circular Motion Lab	Y	When velocity is kept constant, what is the relationship between the radius of circular motion and the period of circular motion? The speed? The acceleration?	1.1, 1.4, 2.1, 2.2, 3.3, 4.1, 4.2, 4.3, 4.4, 5.1, 6.1, 6.2, 6.4		arallel Lab		explore current and voltage in resistors hooked up to a power supply when resistors are wired in series with one another and when they are wired in parallel	3.3, 4.1, 4.2, 4.3, 4.4, 5.1, 6.1, 6.2, 6.4
#10 Centripetal Force Lab	Y	Using a spinning rubber stopper to lift masses, students will determine the relationship between the acceleration of the stopper and the centripetal force.	1.1, 1.4, 2.1, 2.2, 3.3, 4.1, 4.2, 4.3, 4.4, 5.1, 6.1, 6.2, 6.4 1.1, 1.4, 2.1, 2.2, 3.3, 4.1, 4.2, 4.3, 4.4, 5.1, 6.1, 6.2, 6.4 1.1, 1.4, 2.2, 4.3, 6.1				with one another.	
				# W L	‡14 Standing Vaves on a Wire .ab	Y	Students will vary wavelength, frequency, and the tension in a wire while looking at standing	1.1, 1.4, 2.1, 2.2, 3.3, 4.1, 4.2, 4.3, 4.4, 5.1,
#11 Conservation of Angular Momentum Lab	Y	What is the relationship between the moment of inertia of a system and the angular momentum of a system?		‡15 Standing Sound Waves in a	N	waves formed on a wire. Students will vary the frequency of sound coming out of a speaker	6.1, 6.2, 6.4 1.1, 1.4, 2.1, 2.2, 3.3, 4.1, 4.4,	
Torque Simulation	N	Students will use a computer simulation to study rotational equilibrium.		1.1, 1.4, 2.2, 4.3, 6.1	lube Lab		to create standing waves in a tube to determine the speed of sound in the classroom.	5.1, 6.1, 6.2, 6.4
#12 Coulomb's Law Lab	Y	What is the charge stored on a pair of charged balloons that are repelling each other?	1.1, 1.4, 2.1, 2.2, 3.3, 4.1, 4.2, 4.3, 4.4, 5.1, 6.1, 6.2, 6.4			I		I
Electrostatics Simulation	N	Using a computer simulation involving two positive charges, explore the electrostatic force of repulsion between the charges, the accelerations of the charges, and how the force and acceleration changes with distance.	1.1, 1.4, 2.1, 2.2, 3.3, 4.1, 4.2, 4.3, 4.4, 5.1, 6.1, 6.2, 6.4					

Physics and its Applications

